
1
D
n
p
s
g
g
s
r
G
n
d
e
o
p
n
[
l
i

d
w
w
t
f
a
d
s
v
s
h
f
a

J. J. Miret and C. J. Zapata-Rodríguez Vol. 27, No. 7 /July 2010 /J. Opt. Soc. Am. B 1435
Diffraction-free propagation of subwavelength
light beams in layered media

Juan J. Miret1 and Carlos J. Zapata-Rodríguez2,*
1Departamento de Óptica, Universidad de Alicante, P.O. Box 99, Alicante, Spain

2Departamento de Óptica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
*Corresponding author: carlos.zapata@uv.es

Received December 24, 2009; revised May 4, 2010; accepted May 7, 2010;
posted May 25, 2010 (Doc. ID 122014); published June 18, 2010

Self-collimation of tightly localized laser beams demonstrated in periodic media relies on a perfect-matched
rephasing of the Fourier constituents of the wavefield induced by a plane isofrequency curve. An alternate way
paved for the achievement of such a phase matching condition developed a suitable spatial filtering in order to
select those frequencies experiencing the same phase velocity projected over a given orientation. In principle
this procedure is valid for complex structured metamaterials. However, a great majority of studies have fo-
cused on free-space propagation leading to the well-known Bessel beams. This paper is devoted to the analysis
of this sort of nondiffracting beams traveling in one-dimensional metallic-dielectric photonic crystals. Specifi-
cally we present a family of localized radiation modes in multilayered periodic media, where in-phase super-
position of p-polarized waves leads to radiative confinement around the beam axis. Excitation of surface plas-
mon polaritons yields an enhanced localization normally to the interfaces. Subwavelength beam widths along
an infinitely long distance might potentially be obtained. © 2010 Optical Society of America

OCIS codes: 240.6680, 350.5500.
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. INTRODUCTION
iffractive broadening is a natural process of electromag-
etic fields involving an increment of the beam width as it
ropagates in free space. A geometrical light pencil neces-
arily evolves to a diverging wave in the Fraunhofer re-
ion, where the spot size increases linearly upon the lon-
itudinal spatial coordinate. Initially, resistance to beam
preading is maintained within the so-called Rayleigh
ange [1], which is a parameter extensively employed in
aussian laser beams estimating the boundaries of the
ear-field region. In the case of wavefields with
iffraction-limited spot sizes, the Rayleigh range becomes
xtremely low approaching a wavelength. In the field of
ptics, however, it is demanded more robust systems ca-
able of circumventing the diffraction phenomenon for in-
ovative applications including electromagnetic tweezers
2], optical acceleration of charged particles [3], super-
ensing [4], optical interconnectors, and communications
n general [5].

The transformation of a collimated beam of light into a
iverging spherical wave may be explained in a simple
ay by using the plane-wave Fourier expansion of a
avefield. The evolution of each spectral component leads

o a characteristic phase shift reaching a maximum value
or the associated plane wave propagating along the beam
xis. If the observation is performed at sufficiently short
istances, dephasing between different elements in the
patial spectrum may be neglected. Therefore the trans-
erse pattern is nearly undistorted resulting in the con-
ervation of the beam size. Out of the near-field region,
owever, the effect of angular dispersion is clearly mani-
ested, which yields a change in the transverse pattern
nd also a linear growth of the beam size.
0740-3224/10/071435-11/$15.00 © 2
Bearing in mind that phase shifts of the transverse
patial spectrum are governed by the dispersion equation,
ne may manage dephasing by tailoring the characteristic
sofrequency contours of the medium. In particular, plane
ispersion curves would lead to zero dephasing of the
pectral elements of the field, and in principle the Ray-
eigh range would be infinitely enlarged along the normal
irection of the dispersion surface. Photonic crystals are
ptical anisotropic media providing complex isofrequency
urves with either positive or negative curvature. An ap-
ropriate choice of materials and lattice geometry would
ead to flat dispersion curves with a zero Gaussian curva-
ure along a given orientation [6–8]. This refers to the
ell-known canalization regime, which is favorable to
inimize dephasing of the transverse spectrum, increas-

ng the Rayleigh range of wavefields in comparison with
ree-space propagation. Experimental evidence of laser
eams propagating in periodic media in the canalization
egime for applications in nano-circuitry is reported else-
here [9,10].
An alternate route consists of exciting spectral compo-

ents all evolving with the same phase shift [11,12]. In
ree space this may be achieved by using a conical lens
13] or a Fabry–Perot etalon [14]. The resulting wavefield
ropagates, for instance, along the z-axis gaining a linear
hase shift exp�i�z� in the same manner than a plane
ave. However, the propagation constant ��0 is lower

higher) than the wave number 2� /� for normal (nega-
ive) dispersion, and the transverse field cannot remain
aving a uniform profile. Bessel beams [15–17] are a well-
nown family of wavefields that belong to this kind,
hich hold a particular interest due to radial symmetry of

he transverse intensity patterns and the strong field lo-
010 Optical Society of America
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alization around the centered focus (say r=0). As a con-
equence, the beam of light seems to violate the principle
f diffraction as the bright spot propagates in a homoge-
eous dielectric medium maintaining a narrow waist
ithout stretching.
The concept of diffraction-free propagation is also at-

ractive if light travels in complex structured media. Non-
iffracting beams with a Bessel profile may be found in
tratified media if the unit vector �n� normal to the inter-
aces lies along the z-axis leading to normal incidence of
he wavefield [18–21]. However, out-of-plane excitation
annot support the invariant propagation of Bessel beams
22]. For example, assuming that the medium is periodic,
he elements of any Fourier superposition are necessarily
loch modes leading to a significant asymmetry in the re-
ultant pattern. Provided the projection � of the Bloch
ave vector along the propagation direction coincides for
very spectral component, we may have a nondiffracting
ocalized beam if, additionally, the phase matching condi-
ion is satisfied [23]. This is also reported in two-
imensional photonic crystals [24,25].
In this paper we study the formation of localized waves

hich propagation is resonantly sustained on a given in-
erface from a one-dimensional periodic metallo-dielectric
edium. The surface resonance arises in transverse-
agnetic (TM) waves �H�n� provided the sign of the di-

lectric constant changes abruptly at both sides of the in-
erface. The excitation of such surface plasmon polaritons
SPPs) is attained at comparatively high values of �, how-
ver, leading to a subwavelength beam size. In spite of
uch an extreme wave localization, the transverse pattern
f the excited field in the linear medium, and so its beam
idth, is ideally maintained for infinitely long distances.

. IN-PLANE PROPAGATION OF
IFFRACTION-FREE BEAMS IN METALLO-
IELECTRIC LAYERED MEDIA
et us consider a monochromatic nondiffracting beam
ropagating in a multilayered medium. The y-axis is set
uch that it is perpendicular to the surfaces separating
he metallic media and the adjacent dielectric media so
hat n= ŷ. In Fig. 1 we show schematically the multilay-
red system. The width of a metallic slab is w, with an el-
ment periodically replicated at a distance p along the

εd εm
p w

x

y

z

ig. 1. (Color online) Schematic geometry of the planar-nano-
ayer-based medium.
-axis. We also assume that beam propagation is directed
long the z-axis so that we may cast the electromagnetic
elds as

E�x,y,z,t� = e�x,y�exp�i�z − i�t�, �1a�

H�x,y,z,t� = h�x,y�exp�i�z − i�t�, �1b�

ith � being the frequency of the monochromatic radia-
ion. The homogeneity of the wavefield in the coordinate z
s explicitly parameterized in terms of the propagation
onstant �. More specifically, we study TM waves where

exists only onto planes parallel to the metal-dielectric
nterfaces, and therefore which component hy vanishes.
ater on we additionally consider wave confinement
round the origin �x ,y�= �0,0� in any given transverse
lane.
The Maxwell’s equations provide some relations be-

ween the transverse fields e and h. The electric field e
ay be derived from h by means of the equation ��H
−i��0�E, where ��y� is the relative dielectric constant of

he foliar structure. Since the field vector is solenoidal we
lso find hz= i�−1�xhx; therefore, hx is the scalar wavefield
rom which we may describe the nondiffracting beam un-
mbiguously. Let us point out that alternate routes for
he description of electromagnetic diffraction-free beams
ay be found elsewhere [26–28].
The two-dimensional Helmholtz equation,

��x
2 + �y

2 + �2�/c2 − �2�hx = 0, �2�

ay be of help in order to find any localized solution of
he field hx. In this study, however, an alternative ap-
roach is carried out. Based on the Bloch theorem [29], we
ay describe the propagating wavefield hx as a superpo-

ition of Bloch modes having the form

hx�x,y� = �
K
�

−�

�

aKhK�y�exp�ikxx + iKy�dkx, �3�

here kx is the (real) component of a wave vector along
he x-axis and K is the so-called Block wave number,
hich generally is multivalued for a given kx. Moreover,
K�y+p�=hK�y� is a periodic function, which is normalized
s hK�0�=1 for convenience, and aK is simply a field am-
litude.
Assuming that sources are sufficiently far from the fo-

al region of the localized beam, the role of evanescent
aves [30] is negligible in our analysis and, therefore,

hey are disregarded setting aK=0 if Im�K��0. In this
ense we also neglect material losses imposing that the
elative dielectric constant of the medium is a real param-
ter of the problem �Im���=0�. We point out that this is
ot strictly true in a realistic problem; plasma-like media
ith �	0 are necessarily dispersive since energy density

onsiderations lead to the condition d���� /d��0, and the
resence of dispersion in general signifies dissipation of
nergy [31]. However, it is possible to neglect the absorp-
ion in a transparency window where the imaginary part
f � is very small in comparison with its real part.

In the case of the stratified medium shown in Fig. 1,
he periodic function hK=hK

+ +hK
− is conveniently written

s the summation of two independent terms, being [32]
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�hK
+

hK
−� = exp�− iKy�T
�y − y
��a


b

�, for y � R
, �4�

here 
 is an integer that refers to a unique slab. Note
hat the amplitude a
 is independent of aK given in Eq.
3) and they should not be confused. The domains are


	�y
−1,y
�, where y0=0, y1=w, and y
+2=y
+p; for in-
tance, R
 is associated with a region where the medium
s metallic when 
 is an odd number. In Eq. (4), the trans-
ation matrix is

T
�y� = �exp�iky
y� 0

0 exp�− iky
y�� . �5�

lso,

ky
 =
 ���/c�2�
 − k�
2, ��/c�2�
 � k�

2

i�k�
2 − ��/c�2�
, ��/c�2�
 	 k�

2, �6�

here �1=�m and �2=�d are the relative dielectric con-
tants of the metallic medium and the dielectric material,
espectively. For other slabs we use the recurrence rela-
ion �
+2=�
; here �
 at 
=0 does not refer to its value in
acuum, but �d. In Eq. (6) the real-valued wave vector
nto a plane parallel to the metallo-dielectric interface
as a squared modulus k�

2=kx
2+�2. Finally since material

osses are neglected, the dielectric constants of the
lasma-like material �m	0 and that of the insulator �d
0 are also real-valued parameters.
The continuities of the wavefield hx and �−1�yhx at the
etallo-dielectric interfaces, together with the periodicity

f hK, determine the waveform of each Bloch mode and its
ispersion behavior. Using the 2�2 transfer matrix for-
ulation for layered media [32] we may obtain the fields

nd the dispersion equation in a rather simple way. The
atter explicitly reads

cos�Kp� = cos�kyd�p − w��cos�kymw�

−
�kym

2 �d
2 + kyd

2 �m
2 �

2kydkym�d�m
sin�kyd�p − w��sin�kymw�.

�7�

n Fig. 2 we plot the real-valued K solutions of Eq. (7) for
multilayer medium composed of thin metallic films of
idth w=50 nm, separated at a distance of p=450 nm,
nd embedded in a dielectric medium of �d=2.25. At a fre-
uency of �=3.427 fs−1 (wavelength of �0=550 nm in the
acuum) our plasma-like medium has a relative dielectric
onstant �m=−15.0. A large bandgap in the interval k�p
�0,4.571� is followed by some two others in (5.126,

.899) and (8.301, 8.503), together with the evanescent-
ave regime at k�p�8.737. As a consequence, real values
f � are limited by �max=8.737/p in our example ��max
19.42 �m−1�. This boundary value is reached at K
±� /p rather than at a zero value [33].
Let us point out that, if the superposition shown in Eq.

3) is such that k� is higher than the cutoff frequency

�c = ��d�/c, �8�

ccurring if k�p�7.711, the wavefields are all of evanes-
ent nature in the metal and in the dielectric; here �
c
17.14 �m−1. The cutoff frequency is plotted with a hori-
ontal red line in Fig. 2. Interestingly, these evanescent
aves may arise at values of k�p such that Eq. (7) gives a
loch wave number with Im�K�=0. Thus, the evanescent
aves are resonantly coupled leading to propagating
loch-type constituents of the diffraction-free wavefield
x�x ,y�. Nondiffracting beams with a propagation con-
tant �� ��c ,�max� are wavefields of this kind.

In Fig. 3 we map different contours of isofrequency � in
he kxK plane based on the graphical representation of
he dispersion equation given in Fig. 2. The first band is
resented in Fig. 3(a) providing a surface of maxima at
x=0 and K= ±� /p reaching �max. Simple closed curves
round these points are found for decreasing values of the
ropagation constant provided �c1�	�max, where �c1p
8.503 coincides with the upper boundary of the first
andgap (point B in Fig. 2). At lower �, spatial frequen-
ies around kx=0 cannot excite propagating Bloch modes
eading to open (isofrequency) curves. This gap is re-

K p

0
π-π

2
π 0

2
π

2

4

6

8

k p

AB

C D
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F

ig. 2. (Color online) Dispersion equation at �=3.4
1015 rad/s for a periodic media as presented in Fig. 1 with w
5�10−8 m and p=4.5�10−7 m. The red (straight) line marks

he boundary of homogeneous- and evanescent-wave regimes in
he dielectric, k�p=7.711. The points in yellow determine the cut-
ff normalized frequencies k�p of values �A� 8.737, �B� 8.503, �C�
.301, �D� 7.899, �E� 5.126, and �F� 4.571.
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ig. 3. (Color online) Isofrequency curves at different propaga-
ion constants �c	�	�max are shown for the (a) first and (b) sec-
nd sheets of the dispersion curve. Contour lines are labeled fol-
owing the normalization �p.
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oved in the second sheet of the dispersion equation,
hich arises for ��c2 and it is shown in Fig. 3(b); obvi-

usly �c2p=8.301 corresponds to the upper limit of the
econd band of allowed spatial frequencies k� (point C). In
his case, the closed curves are centered at the origin of
he plane kxK (and at multiples of 2� /p along the K-axis).
imilarly to Fig. 3(a), the isofrequency curves are closed
hen � takes values belonging to the (second) band of al-

owed frequencies; here �c3�	�c2, where �c3p=7.899
point D). Out of this interval, the isofrequency curves are
pen again.

To conclude, the periodic function hK is depicted in Fig.
at different values of k�. In all cases, the absolute value

hK� is an even function whereas its argument is an odd
unction with respect to the center of the metallic film,
rovided the latter is set off to zero (for instance, at y
w /2). Peaks are formed at metal-dielectric interfaces
nd valleys are formed at the center of the slabs; this rule
olds in the purely evanescent regime when k �� . How-

y (µm)

|hK|

|hK|

|hK|

(a)

(e)

(c)

-0.4 -0.2 0.0 0.2 0.4
0.0

1.0

y (µm)
-0.4 -0.2 0.0 0.2 0.40.0

1.0

y (µm)
-0.4 -0.2 0.0 0.2 0.4

0.0

1.2

k p = 8.737(

k p = 8.301(

k p = 5.125(

ig. 4. (Color online) Behavior of the complex amplitude (left col
alues of k� and positive K corresponding to the first (top), secon
� c
ver the maximum of intensity is reached at the center of
he dielectrics if k� belongs to the third band [see Fig.
(e)]. On other hand we observe that phases of the wave
unction hK have a characteristic variation at different
pectral bands. For instance, phases are �� rad at the
ight side of the central metallic slab y=w in the top
and; however, this phase turns to �0 in the second band.
e show below that this is of relevance in the formation

f an on-axis focus.

. FOCUS GENERATION
et us establish some favorable conditions for the forma-

ion of a focus along the z-axis. Using �x ,y�= �0,0� in Eq.
3) we obtain the wavefield amplitude hx=�K�aKdkx at
he origin as a summation of the amplitudes aK corre-
ponding to different Bloch modes. This may be inter-
reted as an interference of Bloch-type individuals. If the
hase of their amplitudes is manipulated in order to have
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he same value leading to in-phase waves, the oscillatory
uperposition yields the highest intensity achievable. Ex-
ept a few particular conditions, it cannot find a point
ther than the origin from the xy plane where such a
hase matching holds. As a consequence, a strong local-
zation of the nondiffracting beam is expected to occur
round the z-axis, with such a line unquestionably consti-
uting a focus.

At this point of our analysis it is interesting to review
he concept of focus wavefields in a system such as the
niform dielectric medium, where nondiffracting solu-
ions of the wave equation are well known. Obviously we
re speaking of Bessel beams [15]. Such a system would
esult from setting w=0 in the layered medium of Fig. 1
o remove the metallic films from the dielectric host. In
his case Eq. (7) leads trivially to the solutions K±= ±kyd.
lso hK�y�=1 in the whole xy plane. The phase matching
ondition at the origin is also observed over a radially
ymmetric transverse pattern if in addition aK is in direct
roportion to �d� /dkx�= �−1/K�, where � is the polar angle
n the kxK plane. Thus inserting

aK±
= �

1

��c
2 − �kx

2 + �2�
, if �kx� 	 ��c

2 − �2

0, otherwise
� �9�

nto Eq. (3) yields the Bessel wavefield hx=2�J0�k�r� pro-
ided �	�c [see Eq. (8)], with

k� = ��c
2 − �2 �10�

eing the transverse wave number and r being the radial
patial coordinate (see [22] for further details). We point
ut that excitations of the type aK=1/ �K� [if Im�K�=0, aK
0, otherwise] also provide paraxial Bessel beams in pe-
iodic media [23] and in anisotropic crystals [34].

A field spectrum like that of Eq. (9) may be experimen-
ally attained using an opaque screen, with a centered ex-
remely thin transparent annulus placed at the front focal
lane of a perfect lens [11]. Highly efficient approaches
ay be found using conical lenses [35,36] and mirrors

37], Fabry–Perot interferometers [14], leaky screens
38–40], and diffractive optical elements [41–43]. Using
uch devices as external sources in our system would ex-
ite the required diffraction-free wavefields in the layered
edium. For simplicity we assume that the spectral

trength of such nondiffracting beams has a form follow-
ng Eq. (9),

aK =
1

��2 − kx
2
, for �kx� 	 �, �11�

nd aK=0 if �kx���.
Let us consider that � and � may be tuned at conve-

ience. Thus �k� 	��2+�2 so that we might apply any
pectral band (i.e., ordinates in Fig. 2) arbitrarily. In our
odel it is reasonable to think of ��2+�2 denoting the

utoff frequency �̄c=2���̄d /�0 associated with the uni-
orm external medium of the dielectric constant �̄d where
he source field is driven. In a great number of examples
iven below �̄c=�max yielding �̄d=2.89; in this medium the
avelength �̄ =� /��̄ =324 nm and the minimum spot
d 0 d
ize of the zero-order Bessel beam is ��x�min=2.253/�

116 nm where the maximum value of �= �̄c at �=0. On
he other hand, our model neglects filtering (apodizing)
ffects and aberrations on the wavefields induced at the
oundaries of the system [22]. However, conventional
echniques for its compensation might be employed in or-
er to find a good agreement with our results. Otherwise
he theory remains valid leaving the appropriate estima-
ion of the spectrum aK.

. SUBWAVELENGTH TRANSVERSE
ATTERNS: NUMERICAL RESULTS
o illustrate the focus generation along the z-axis, we per-
orm a numerical simulation in the periodic layered me-
ium of p=450 nm (and �d=2.25) with metallic films of
=50 nm and �m=−15.0. In Fig. 5 we show the field in-

ensity �hx�2 for a nondiffracting beam of propagation con-
tant �=18.90 �m−1 ��=�c1�, which spatial spectrum is
iven by Eq. (11) with �=4.462 �m−1 ��p=2.008�. Thus
he maximum value of k� reaches a value coinciding with
max, i.e., �c1k� 	�max corresponding to the first band of
llowed frequencies shown in Fig. 2. The isofrequency
urve K=K�kx� is also depicted in the inset of the figure,
here excited frequencies kx are shaded in blue. The in-

ensity is maximum at the origin but the pattern exhibits
o radial symmetry. The field distribution along the ab-
cissa,

hx�x,y = 0� = 2�
−�/2

�/2

cos��x cos ��d� = 2�J0��x�, �12�

200 nm

K p

2π

-2π
kx p 4-4

59º

ig. 5. (Color online) Contour plot of the intensity �hx�2 in the xy
lane corresponding to a localized diffraction-free beam of nor-
alized propagation constant �p=8.503 and transverse fre-

uency �p=2.008 leading to �k�p�max=8.737. Intensity distribu-
ions along the coordinate axes are shown at the top and left
ides. Inset: Isofrequency curve where shaded region corresponds
o the excited spatial bandwidth.
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esembles that of the source field that would propagate in
he homogeneous dielectric medium of �̄d=2.89. We point
ut that some discrepancies arise in Eq. (12) if some spa-
ial frequencies kx are excited but, because of the presence
f a gap, they do not contribute to the resulting propagat-
ng wavefield; this case will be treated ahead. From Eq.
12) we derive that the full width at half-maximum
FWHM) of the intensity peak along this direction is in-
ersely proportional to � following �x=2.253/�. In our
ase �x=505 nm, which is above the wavelength in the di-
lectric host �d=�0 /��d �=367 nm�. However, the behavior
long the ordinate is significantly different. The most at-
ractive feature of the wavefield is its high localization in
he metal-dielectric interfaces, leading to fast decays
hen moving away from the surfaces and thus forming
edge-like shapes. This is in agreement with the patterns

hown in Figs. 4(a) and 4(b) contributing to the integral
3) at x=0. Although the highest peak is attained at y=0,
large one also arises on the other side of the central me-

allic film, y=w. There, the Bloch modes hK�y�exp�iKy�
re as strong as in focus and they interfere nearly in-
hase (dephase 	0.29� rad) giving a secondary focus. Ig-
oring this sidelobe, the FWHM of the figure is �y
45.99 nm, well below �d.
Apart from surface resonances, radial asymmetry from

ocus is also attributed to a high concentration of light
long certain directions in the xy plane. This directional
nhancement of the radiated power may be explained by
eans of an effect coined as photon focusing [44], a term
hich was first used onto the strong anisotropy of heat
ux in crystalline solids and that takes other names in
ptics like self-collimation [6], self-guiding [7], and subdif-
ractive propagation [45].

The estimation of the value(s) of the azimuthal coordi-
ate � where photon focusing is manifested is based on
he stationary-phase principle. First note that the phase
actor exp�ikxx+ iKy� of Eq. (3) varies rapidly when mov-
ng away from the origin, r→�, being �x ,y�
r�cos � ,sin ��. This phase term also introduces strong
scillations for running kx except in the vicinities of those
patial frequencies kxs satisfying x+Ks�y=0, where K�
dK /dkx and the subindex s stands for the value given at
xs. Setting Ks�=tan �s we have the solutions �s=�±� /2;
onsequently the tangent of the curve K�kx� at the station-
ry points kxs is normal to the vector position of the ob-
ervation point �x ,y�. Moreover, the asymptotic behavior
f Eq. (3) depends exclusively on those stationary points
xs; substituting K by Ks in every term of the integrand,
xcept the phase factor for which we use a quadratic ex-
ansion K�Ks+Ks��kx−kxs�+Ks��kx−kxs�2 /2, finally yields

hx�x,y� � �
K,kxs

aKs
hKs

�y�exp�ikxsx + iKsy�IKs
�y�, �13�

here

IKs
�y� =�

−�

�

exp�iKs��kx − kxs�2y/2�dkx

=� 2�

�Ks�y�
exp�i

�

4
sgn�Ks�y�� . �14�

n this simple analysis we have also assumed that a has
K
well behavior and it does not present discontinuities. In
he far-field zone �hx�2 decreases inversely proportional to
he radial coordinate r, except those directions � where
tationary points satisfy Ks�=0. In these cases the disper-
ion curve is flat leading to a significantly slow attenua-
ion of the radiated power, at least much slower than r−1.

In Fig. 6(a) we plot the solutions kxs of the equation

s�=0 at different values of �. Considering that the disper-
ion (7) may be written as cos�Kp�= f�kx�, the solutions of
he equation Ks�=0 are also the frequencies kxs satisfying

fs��1 − fs
2� + fs�

2fs = 0. �15�

s shown in Fig. 3(a), the isofrequency curves for �c1	�
�max mimic ellipses that lack of flat sections so that

s�=0 has no real solutions. For �=�c1, the isofrequency
urve presented also in the inset of Fig. 5 is flat at the ori-
in of the plane kxK taking a shape of X. In this case
kxs ,Ks�= �0,0� for which Ks�= ±0.604 and �s= ±31°. See
ig. 6(b) showing the estimated (positive) values of �s also

or other propagation constants �. Our analysis concludes
hat the self-guiding phenomenon is expected at angles
= ±59° (and �= ±121°), in agreement with the transverse
attern shown in Fig. 5. When �c3	�	�c1, solving Eq.
15) leads to increasing values of �kxs� and therefore in-
reasing values of ��s� as shown in Figs. 6(a) and 6(b), re-
pectively. Interestingly, kxs=0 becomes again a solution
f �=�c3 (here giving Ks= ±� /p) for which �s= ±42°; also
xs= ±3.32/p gives Ks�=0, where �s= ±73°. Moreover, a
inimum of four values of kxs may be found for �	�c3 in
hich the zero-diffraction condition Ks�=0 holds. We may

onclude the general rule that a larger number of solu-
ions come out when (positive) � decreases reaching new
andgaps for the frequency k� as shown in Fig. 2.
Let us analyze the intensity patterns of diffraction-free

eams under the presence of bandgaps �Im�K��0� within
he source spectral window �kx�	�. In Fig. 7 we plot �hx�2
f wavefields with the propagation constant �=�c3 corre-
ponding to the lower limit of the second band. In Fig. 7(a)
p=2.552 that yields �k��max=�c2. This means that the
ource excites entirely the second band of allowed spatial
requencies with no gaps; therefore Eq. (12) is valid and
x=2.253/� �=397 nm�. Along the y-axis, the narrow peak
round the origin has a FWHM of �y=62.52 nm and
gain is accompanied by a high sidelobe at the other side
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ig. 6. (Color online) (a) Solutions kx of Eq. (15), Ks�=0, associ-
ted with different propagation constants � of the wavefields, in
he layered structure of Fig. 1. (b) Azimuthal angle � in the plane
xK that corresponds to each solution of the aforementioned self-
uiding condition.
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f the metallic film. The formation of this secondary focus
s again the constructive interference (nearly in-phase) of
he Bloch modes from the second band. On other hand,
elf-collimation is attributed exclusively to the stationary
oints �kxs ,Ks�= �0, ±� /p� giving �= ±48° (�s= ±42° as
een above).

Setting �p=3.148 as shown in Fig. 7(b), the bandgap
c2	k� 	�c1 is encountered, that is, frequencies satisfy-

ng �c1	 �kx�	�c2 are frustratedly excited (being �c1p
2.552 and �c2p=3.148) so that the optical system be-
aves like a low-pass filter. In this case

hx�x,y = 0� = 2�J0��x� − hxc1��x�, �16�

here

hxc1��x� = 2�
−�c1

�c1

cos��x cos ��d� = �
m=0

�

Cm
�c1�J2m��x�,

�17�

ith 0�c1	� /2 such that � cos �c1=�c1,

Cm
�c1� = 4�− 1�m

sin�2m�c1�

m
, for m � 0, �18�

nd C0
�c1�=4�c1. We point out that J2m�0�=0 for m�0 so

hat in the vicinities of the focal point we have hx��2�
4�c1�J0��x�. However the central peak stretches slightly,
pecifically �x=459 nm, whereas sidelobes are altered sig-
ificantly as expected. Moreover, the FWHM in the direc-
ion of the periodicity �y=61.58 nm and self-collimation
ngles �= ±48° are also maintained is spite of bandgaps.
Finally, arriving at �p=3.734 we are able to excite ev-

ry allowed spatial frequency in the first band since
k��max=�max. The intensity �hx�2 is depicted in Fig. 7(c)
howing notable differences from the cases previously
nalyzed. For instance, the FWHM along the x-axis is
x=277 nm, which is close to the value we would obtain if
e ignore the bandgap. In this case �x is lower than the

adiation wavelength in the dielectric, �d=367 nm; how-
ver this subwavelength size is still higher than �d /2 in
he same order than a regular Bessel beam. Here we may
valuate the wavefield by

K p

kx p-4

K p

kx p 4-4

200 nm

(a)

ig. 7. (Color online) Transverse intensity �hx�2�x ,y� for diffract
p=3.148, and (c) �p=3.734. Insets: Isofrequency curve at �p=7
ion. Light blue regions refer to gap-induced frustrated excitatio
hx�x,y = 0� = 2�J0��x� − hxc1��x� + hxc2��x�, �19�

here � cos �c2=�c2. Sidelobes are also strongly attenu-
ted in all directions, even at those associated with self-
ollimation. Here �= ±48° ��s= ±42°� and also �= ±17°
�s= ±73°�; as a consequence, sharing the power radiated
n this large number of directions leads to the weakening
f the photon-focusing effect. More importantly, the high
idelobe appearing previously in the y-axis seems to be
iped out completely. This effect may be explained con-

idering that Bloch components from the first band and
hose from the second band are roughly out-of-phase at
=w [see Figs. 4(b) and 4(d)] so that they interfere de-
tructively in Eq. (3). Additionally, the central peak is un-
ltered in practical terms, giving �y=54 nm.

. HYBRID CONSTRUCTION OF
IFFRACTION-FREE WAVES

n the numerical simulations given above we have shown
hat beam sizes along the x-axis are larger than the dif-
raction limit �d /2 attained by quasi-stationary Bessel
eams propagating in the medium of the dielectric con-
tant �d, whereas �y is clearly subwavelength. Control
ver the wave pattern and thus over its FWHM in the x
irection is exercised by the spectrum of spatial frequen-
ies kx: the higher is the bandwidth the lower is �x. From

x
2�max

2 −�2 estimating the spectral domain of the wave-
eld we conclude that decreasing � leads to a widening of
he spectrum. However, if �	�c the plane-wave compo-
ents in the dielectric material propagate homogeneously
o that they are not necessarily coupled resonantly
round the metal-dielectric surfaces. In principle, this ef-
ect might modify significantly the localization of the field
n the direction of the periodicity. Let us clarify these as-
ects.
The contour plot shown in Fig. 8 corresponds to a

iffraction-free beam of propagation constant �
10.157 �m−1 ��p=4.571� coinciding with the lower limit
f k� for the third band (see Fig. 2). The transverse fre-
uency �p=7.446 guarantees that all the three bands of
llowed frequencies are excited; this is a high value since
f it were generated in a uniform medium with �̄ =2.89 it

200 nm
48º

K p

kx p 4-4

200 nm

(b) (c)

e beams of �p=7.899 and spatial frequencies (a) �p=2.552, (b)
he blue shade indicates the spectral window in kx under excita-
4

ion-fre
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ould give a Bessel beam of width �x=136 nm. Figure 8
hows that the intensity �hx�2 is distributed mainly
round the interface y=0. A narrow peak on the focus is
roduced exhibiting a width of �x=132 nm, which is
lightly lower than that just given above. Also strong side-
obes arise in the vicinity of the focus. This suggests that
andgaps inherent in a photonic crystal provide a mecha-
ism to achieve a superresolving effect going beyond the
iffraction-induced Bessel limit. The origin of this super-
esolving effect is not the excitation of SPPs but an en-
ancement of high spatial frequencies [46].
On other hand, the field distribution in the y-axis dem-

nstrates a subwavelength focus of FWHM �y=44 nm.
idelobes on the interfaces are accompanied with other
eaks in the middle of the dielectric slabs. This is not sur-
rising since Bloch components of the third band shown
n Fig. 4(e) and contributing in the expansion (3) have
uch a behavior. This effect is in fact more pronounced
long directions oriented with polar angles �=�s±� /2,
ith the stationary point being �s= ±41° ��= ±49°� asso-

iated with the self-collimation effect.
Although superresolution along the x-axis is modest in

omparison with that obtained in the y-axis, we wonder if
eam widths might surpass the diffraction limit in all di-
ections. As resolved in Section 3, for our examples where
max=19.42 �m−1 and �0=550 nm this diffraction limit
eads �min=116 nm. In Fig. 9 we present the intensity
istribution �hx�2 of a nondiffracting beam excited with a
ransverse spatial frequency of �=17.20 �m−1 giving a
ropagation constant of �=9.00 �m−1. In this case the
entral peak is anamorphic and characterized by FWHMs
f �x=109 nm and �y=46 nm all below the diffraction
imit. The bandgap-induced filtering also leads to intense

200 nm

p

kx p 8-8

ig. 8. (Color online) Intensity �hx�2 in the transverse xy plane
or a nondiffracting beam of �=10.16 �m−1 and �=16.55 �m−1.
xcitation of Bloch modes with �kx�	5.15 �m−1 leads to noneva-
escent wavelets in the dielectric slabs so that the resulting hy-
rid wavefield from Eq. (3) combines Bloch constituents of differ-
nt nature.
idelobes along the interface y=0; however they decay as
oing beyond the focus. Moreover, the peak intensity of
hese secondary foci cannot exceed the intensity of the
ain focus.

. EXTREME LOCALIZATION
he central spot size of the nondiffracting beam is funda-
entally limited by the maximum value achievable by k�.

aking into account that k� �max, large values may be
eached by using materials with high refractive indices.
lso, the geometry of the layered structure has a great

mpact upon �max, which may be tuned by modifying the
idths w of the metallic layers and that of the dielectric

ayers, p−w. This is clearly seen within the effective me-
ium theory. Assuming that p��0, Eq. (7) approaches an
llipsoid of revolution [47]. The p-polarized waves thus
re formally analogous to the so-called extraordinary
aves in a uniaxial crystal. As a consequence, the modu-

us of the wave vector projected onto the xz plane would
ake a maximum value given by �max=��eff� /c, where the
ffective permittivity �eff for the extraordinary waves sat-
sfies the equation

1

�eff
=

w

p

1

�m
+

p − w

p

1

�d
. �20�

he value of �max might be infinitely large in the case
eff→�, which occurs if

p

w
= 1 −

�d

�m
. �21�

ntroducing Eq. (21) into the dispersion (7) one may ob-
erve that k� is bounded, however, reaching values ex-
remely higher than � /c.

200 nm

K p

kx p 8-8

ig. 9. (Color online) Transverse pattern of a nondiffracting
eam with �=9.00 �m−1. The beam width of the main central fo-
us has �x=109 nm and �y=46 nm, going beyond the diffraction
imit �min=116 nm.
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Figure 10 shows the transverse intensity �hx�2 of a non-
iffracting beam propagating in a layered medium of pe-
iod p=13.2 nm made of a metallic ��m=−12.9� and a di-
lectric ��d=13.9� material. Equation (21) provides the
idth w=6.35 nm of the metallic films. The propagation

onstant � is arbitrary chosen; let us make it coinciding
ith the wave number of a plane wave propagating in
acuum, � /c=11.4 �m−1. This is much lower than the
aximum value attainable, �max=595 �m−1. Note that

he environment medium necessary to excite wavefields
ith k� of such a magnitude requires an index of refrac-

ion higher than ��̄d=52, which is dramatically large for
ielectric materials in the visible spectrum. This suggests
hat external sources should launch nondiffracting beams
f evanescent nature [48,49]. Also Eq. (7) gives a single-
and isofrequency curve leading to the Bessel pattern in
he form of Eq. (12) along the x-axis. In this case, a highly
ubwavelength FWHM of the central spot is achieved,
x=3.79 nm, due to the fact that ���max. In the perpen-
icular direction the FWHM is still lower giving �y
2.05 nm. Finally, the transverse diffraction pattern is
lurred along the y-axis caused by the eccentricity of the
lliptic isofrequency curve.

The nano-layered periodic structure employed in Fig.
0 has also an attractive property not mentioned yet. The
sofrequency curves are nearly flat within the range
kx�p1. In our case p��0 leading to a self-collimation re-
ime that is extended over a large spatial bandwidth. Ex-
itation of a Bessel beam with a propagation constant of
=9.00 �m−1 and a transverse spectral width of �
17.20 �m−1, as performed in Fig. 9, would lead to the

ormation of Bloch waves in the periodic medium with the
ame Block wave number K=11.9 �m−1. The result is
hown in Fig. 11. The Bessel profile along the x-axis has a
WHM of �x=131 nm, slightly higher than that observed

n Fig. 9; on other hand, it exhibits lower sidelobes. Fur-

p

kx p 8-8

10 nm

5 nm

ig. 10. (Color online) Transverse intensity �hx�2 of a diffraction-
ree beam traveling in a metal-dielectric multilayer of period p
13.2 nm. The propagation constant �=11.4 �m−1 is signifi-
antly lower than the maximum value achievable, �max
595 �m−1, leading to extreme subwavelength localization.
hermore, the field pattern in the y-axis presents enor-
ous differences in comparison with numerical simula-

ions given above. Wave localization in the metal-
ielectric surfaces seems to be uniformly distributed
xcept for a long-period modulation. The flat dispersion
urve induces a focus generation with an infinitely large
epth of field [11], thus preventing from light concentra-
ion around a single interface. Also interference of
ounter-propagating Bloch waves featuring the formation
f the transverse focus [22] leads to the production of
oung-type fringes with an intensity variation of the en-
elope [blue solid line in Fig. 11] that is proportional to
os2�Ky�. Thus the envelope of these standing Bloch
aves shows equienergetic peaks, which FWHM yields
y=132 nm.
It is interesting to mention that well-shaped foci might

e formed in the absence of back-propagating waves [22].
n such a case the intensity pattern depicted in Fig. 11
ould conserve the Besselian shape along the x-axis. On

he contrary it would leave a full wave delocalization
pon the spatial coordinates y and z. As discussed previ-
usly, invariant propagation along these two orientations
as a distinct origin. One is caused by the flattening of
he isofrequency curve, and the other is produced by an
xternal filtering leaving plane-wave constituents of the
avefield developing the same phase velocity projected
long the z-axis.

. CONCLUDING REMARKS
e have demonstrated that diffraction-free beams propa-

ating in structured media composed of alternating layers
f positive and negative �’s may reach beam sizes surpass-
ng the diffraction limit. The periodic medium may ex-
ibit positive, negative, and even plane isofrequency

100 nm

K p

kx p 8-8

10 nm

ig. 11. (Color online) Intensity pattern in the xy plane corre-
ponding to a nondiffracting beam of propagation constant �
9.00 �m−1 and transverse frequency �=17.20 �m−1. The planar

sofrequency curve induces a self-guiding effect along the y-axis
roviding Block waves with K=11.9 �m−1. Interference fringes
re caused by counter-propagating wave functions.
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urves since it is not responsible for the self-collimation
henomenon. Instead the nondiffracting effect lies on the
patial characteristics of the beam itself. We demonstrate
hat both are not self-exclusory mechanisms and there-
ore they may be introduced simultaneously along two
erpendicular directions.
For an excitation of the form given in Eq. (11), we recall

hat the diffraction limit is attained when the transverse
patial frequency is maximum, �max=��̄d� /c, leading to
tationary ��=0� Bessel waves with a central spot of
WHM �min=2.253/�max. In the layered system, two dif-

erent mechanisms lead to the superresolving effect. A
andpass filtering due to the existence of gaps in the spa-
ial spectrum of kx modifies the response of the system
ransversally providing a narrow peak along the x-axis
ith moderate gain ��x��min� and high sidelobes (sec-
ndary foci). In the direction of the periodicity, however,
uperresolution is carried out by the formation of surface
esonances in the metal-dielectric interfaces leading to
ast decays out of these planes. In our numerical simula-
ions, �y can be as low as a third of �min. Additionally,
ephasing of Bloch constituents belonging to different
ands contributes to the growth control of secondary foci
n nearby surfaces.

In principle, subwavelength beam widths along an in-
nitely long distance might potentially be obtained. How-
ver practical limitations in the geometry of the system
eads to the generation of invariant wavefields along with

finite axial distance. The estimation of such limits is
imilar, for example, to that corresponding to Bessel
eams propagating in free space [15,16], and therefore
hey are not discussed here. However we point out the de-
isive role of the structured medium in order to achieve
he subwavelength beam sizes: these wavefields cannot
e sustained in free space for ranges longer than a wave-
ength. Relevant aspects in near-field subwavelength non-
iffracting beams are exhaustively investigated by
ukhlevsky and co-workers [49–52].
Finally, material losses are neglected in our analysis.

ince Im ��0 leads to wave damping in an unbounded
issipative system, absorption in the medium should be
ccounted for assuming a limited number of slabs. We
ave performed numerical simulations showing that the
uperresolving effect along the y-axis is practically main-
ained for a small absorption coefficient of the metallic
edium and a moderate number of layers, whereas the

eak slightly gets wider along the x-axis. Even when as-
uming that the focus is placed at an interface near the
enter of the system, boundary effects and also tunneling
ffects cannot be ignored. For instance, setting �m=−15
i0.15 we may excite a diffraction-free beam with a
ropagation constant of �=9 �m−1 and a central peak of
x=139 nm and �y=43 nm in a medium composed of 20
nit cells. The deterioration in the resolution power along
he x-axis is mainly caused by a selective increment in
m K within the allowed spectral bands, an effect that is
specially dramatic in the highest band. We have esti-
ated that the central peak is also enlarged to a lesser

xtent by increasing the number of layers. Under these
nfavorable conditions the beam size is still surpassing
he diffraction limit along the direction of the periodicity.
n other hand, a significant attenuation of the focal in-
ensity is also evident. In our numerical simulation, in-
ocus intensity decreases down to 18% (6%) from its origi-
al value if Im �m=0.15 and the number of unit cells is 10

20). A paper containing an extended analysis with fur-
her details is in preparation.
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